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The scaling exponent and the scaling function for the 1D single-species coagula- 
tion model (A + A--* A) are shown to be universal, i.e., they are not influenced 
by the value of the coagulation rate. They are independent of the initial condi- 
tions as well. Two different numerical methods are used to compute the scaling 
properties of the concentration: Monte Carlo simulations and extrapolations of 
exact finite-lattice data. These methods are tested in a case where analytical 
results are available. To obtain reliable results from finite-size extrapolations, 
numerical data for lattices up to ten sites are sufficient. 

KEY WORDS: Reaction-diffusion systems; finite-size scaling; Monte Carlo 
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1. INTRODUCTION 

The  s tudy  of  r eac t ion -d i f fus ion  systems has b e c o m e  a field of  intense 

research in recent  years. Since ana ly t ica l  so lu t ions  are  only  possible  in 
special  cases, numer i ca l  m e t h o d s  are  a useful too l  in the inves t iga t ion  of  

these systems. ~1-3~ In  c o n t i n u a t i o n  o f  ou r  p rev ious  pape r  t4~ (deno ted  by 

pape r  I in the sequel) ,  we concen t r a t e  on the c o a g u l a t i o n  m o d e l  def ined on  

a o n e - d i m e n s i o n a l  lat t ice of  length  L. This  m o d e l  a l lows the descr ip t ion  of  

exc i ton  c o n c e n t r a t i o n  decay  in p o r o u s  media ,  a p h e n o m e n o n  exper imen-  

tally s tudied  in refs. 5-8. In  the c o a g u l a t i o n  m o d e l  only  the fo l lowing  two 
processes  on  ad jacen t  sites take  place  with  l e f t - r i gh t - symmet r i c  rates:  
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�9 Diffusion with rate D 

(1.1) 

�9 Coagulation with rate c 

A + A ~ A (1.2) 

One of the two reaction rates can be eliminated by choosing the time 
scale such that D = 1. So there remains only one parameter describing the 
reaction rates. A convenient choice for this parameter is the asymmetry A' 
between the diffusion rate and the coagulation rate: 

A ' = l - - c  (1.3) 

In paper I it was shown that this model is analytically solvable only for 
A ' =  0. In this case the finite-size scaling behavior was investigated. In this 
article these investigations are extended to the case A'~-0, using Monte 
Carlo techniques. We also present a new interesting method based on 
extrapolation of data obtained by numerical diagonalization. 

Up to now theoretical and numerical methods have concentrated on 
the thermodynamic and the continuum limits. Thus Monte Carlo simula- 
tions were performed on large lattices with L/> 10 3 in order to avoid finite- 
size effects. In this article we use the opposite approach: We are able to 
show that by studying the dependence of the concentration on the length 
L of the lattice one can get information about the behavior of the system 
in the thermodynamic limit. The key point here is the validity of the finite- 
size scaling hypothesis of the concentration for reaction-diffusion systems 
with critical dynamics. Following Alcaraz et al., t9J the concentration 
behaves according to 

c(z, L)  = L"[Fo(z )  + L--"F(z)  + . . . ]  (1.4) 

in the limit L ~ ~ ,  t ~ ov with z = 4t /L  2 fixed. In this equation x denotes 
the scaling exponent, Fo(z) the scaling function, and L - Y F ( z )  the leading 
correction term. 

We point out that the finite-size scaling hypothesis is only valid for 
systems which do not have a finite energy gap in their spectrum. Such 
systems are commonly said to be massless. Therefore the spectrum allows 
us to decide whether the finite-size scaling hypothesis can be applied or 
not. 

The finite-size scaling behavior can be studied in a new way which 
we will now briefly explain. The master equation describing a reaction- 
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diffusion system can be written as a Euclidean Schr6dinger equation in the 
2/--dimensional configuration spacel9~: 

0 
0t I e ( t ) )  = - n  I e ( t ) )  (1.5) 

where H is the Hamiltonian describing the system. For small lattices the 
equation can be solved by numerical diagonalization of the Hamiltonian. 
This gives us a way to compute expectation values of various observables 
for arbitrary chemical processes and lattice lengths L up to 10-20 sites. 
(The minimal value of the lattice length needed for this computation 
depends on the number of particle species, the maximal possible value is 
limited by the computer capacity.) The scaling exponent, the scaling func- 
tion, and the correction term are obtained through extrapolation of the 
finite-lattice data. 

In paper I we showed that the spectrum of the Hamiltonian H describing 
the coagulation model is given by that of the X X Z  quantum chain in an 
external magnetic field. The first aim of the present paper is to investigate 
the scaling behavior (1.4) of the concentration for different choices of the 
coagulation rate c, i.e., different values of A'. As long as no decoagulation 
reaction (A ~ A  + A )  occurs, the system is on the Pokrovsky-Talapov 
line c91 for any A'. It can be shown t~m that in the continuum, along the 
Pokrovsky-Talapov line, the system is always massless with the same 
quadratic dispersion relation. We expect that this fact is reflected in the 
scaling properties. For A ' =  0 the spectrum can be obtained in terms of free 
fermions. This fact allows the analytical solutions presented in paper I. For 
A' :~0 these calculations do not apply. Therefore we use Monte Carlo 
simulations to determine the scaling exponent and function as well as the 
corrections. 

The case 0 < A' < 1 corresponds to a coagulation reaction taking place 
with probability c <  I on two-particle encounters, a subject which has 
drawn much attention in recent years. Some of the approaches studying 
this situation ~l'12J are based on mean-field approximations for infinite 
lattices and treat the crossover from the reaction-controlled to the diffu- 
sion-controlled reaction regime. An approximate equation for the particle 
concentration derived from empty interval probabilities is considered in 
ref. 13. In refs. 14-16 the self-organization of the model in the continuum 
limit was investigated by studying the nearest-neighbor distance distribu- 
tion. Interesting conclusions were drawn from Monte Carlo simulations. 
The decay of the concentration at intermediate times as a t-dependent effec- 
tive exponent law was proposed in ref. 17. The determination of the steady- 
state densities was used in ref. 18 in order to get the "effective reaction 
order," i.e., the effective exponent of the density replacing the classical 
exponent in the rate equation. 
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It is a well-known fact that at large times the particle concentration in 
the thermodynamic limit behaves like (2nt) -I/2. The results we obtained 
from finite-size scaling analysis of Monte Carlo data show that this 
behavior occurs independently of the value of A'. Moreover, we show that 
the next-to-leading term is of the order t -  1 with a coefficient dependent on 
,4' and independent of the initial conditions. Thus we are in perfect agree- 
ment with the analytical results of refs. 13 and 14. 

Up to now only the case of A ' >  0, i.e., coagulation rate less than the 
diffusion rate, has been studied in the literature. We extend the investiga- 
tion to the case of negative values of ,4', i.e., coagulation rate larger 
than the diffusion rate, and find a similar behavior. This is an important 
observation because the model can clearly be interpreted as a system with 
a short-range attractive force between the particles. 

Our second point of interest is to figure out how the choice of initial 
conditions influences the scaling properties. For , 4 ' = 0  the case of 
uncorrelated initial conditions with arbitrary initial occupation probability 
p was treated analytically in paper I. Now we use Monte Carlo simulations 
and extrapolations from finite lattices to study initial configurations with 
small clusters. Due to lack of computer time, these studies are carried out 
for ,4 '=  0 only. 

It was pointed out in paper I that scaling relations allow us to com- 
pute estimates for critical exponents of an infinite system from the scaling 
behavior of a finite one. An important purpose of the present paper is 
therefore to figure out what lattice sizes are necessary to compute the scal- 
ing properties numerically. The case of ,4 '=  0 is used to test the accuracy 
of finite-lattice extrapolations. It is shown that finite-size analysis allows us 
to determine the scaling properties already from numerical data for lattices 
of length smaller than ten sites. 

We decided to organize the paper according to the different numerical 
methods we use. In Section 2 we discuss Monte Carlo simulations of 
reaction--diffusion systems and present the results obtained by this method. 
Section 3 is devoted to extrapolations from finite lattices. The accuracy of 
the extrapolations is studied and the investigation of different initial condi- 
tions in the case of open boundary conditions is presented. We close with 
the discussion of our results. 

2. MONTE CARLO S I M U L A T I O N S  

Before we present the results of the Monte Carlo simulations, we briefly 
explain how the simulations are performed. The dynamics of the system is 
determined by the rates F~.I~ for the nearest-neighbor interactions: 

(r ~ (),, 6) (2.1) 
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Here a value of ~, fl, y, 6 = 1 corresponds to a particle and a value of 0 to 
a vacancy. 

We consider two types of initial conditions: in an uncorrelated initial 
state all sites are occupied with equal probability p at t = 0 ;  a weakly 
correlated state consists of a pairwise alternating sequence of particles and 
vacancies ( A A f , ~ A A ( ~ ( , O . . . ) .  

We only study vacuum-driven processes, i.e., no reactions occur on a 
pair of empty sites. Therefore we use the "direct method ''~'2~ for our 
simulations. By At we denote a discrete time step. Each Monte Carlo step 
consists of the following operations: 

1. A particle is chosen at random and afterward, with equal prob- 
ability, one of its neighbors. The resulting pair (~,/3) cannot consist of two 
vacancies. 

2. A new configuration (7, 6) ~ (~,/3) is chosen with the probability 

n(~,/3) F~.:~ At (2.2) 

or the pair remains unchanged with probability 

1 - n(~,/3) At Z F~.:~ (2.3) 

Here n(e,/3) is defined by 

! if (0~, f l )= (1, 1) 

n(a, f l )= if (a, f l )= (1, 0) 

if (a, f l )=(0,  1) 

(2.4) 

This factor 1~9) simply accounts for the fact that a pair containing only a 
single particle is chosen with half the probability of choosing one that 
consists of two particles. 

3. Finally the time is increased: 

t ~ t + A t / N  (2.5) 

where N is the total number of particles on the lattice. 

If the coagulation process has been chosen in a Monte Carlo step, the 
average concentration decreases by an amount of 

1 
q" = LN~ (2.6) 



1476 

Table I. 

Krebs e t  al.  

M a x i m u m  Error of  the Simulated Concentrat ion for  
Periodic Boundaries and A' = 0 

At L /max Maximum error in % 

5 x 10 -'~ 6 0.9 0.36 
5 x 10-2 200 10 3 0.42 
5 x 10 -j 1000 25 x 103 0.44 

where Ns denotes the number of samples (i.e., program runs) used in the 
simulation. Therefore the simulated time t should not reach values where 
the concentration c(t) becomes of the order of q,.. Because we are interested 
in the scaling behavior and the corrections, it is necessary to perform the 
simulations on small lattices ( L <  100). Therefore the number of samples 
Ns has to be large. A large number of samples is advantageous because the 
standard deviation of the mean decreases like (N,)-~ The limit is set by 
the growth of the necessary CPU time. Averaging over N,. = 20,000 samples 
provides very accurate results, as the test described in the sequel will show. 

The time discretization At clearly influences the quality of the simula- 
tions. For smaller lattices this influence grows, because the number of 
particles is small [cf. Eq. (2.5)]. As a test, we perform simulations for 
d ' =  0 and periodic boundary conditions and compare the results with the 
exact expressions from paper I. The difference of the concentration averaged 
over 20,000 program runs and the exact value is used as a measure for the 
accuracy of the simulation. Table I shows the maximum value of the 
relative deviation which is observed during simulations up to a value of 
Zm,x =0.1. Then the maximum simulated time is tma x = 2maxZ2/4. It can be 
seen that At has to be decreased to obtain results with equal accuracy for 
smaller lattices. The table shows typical values for At which are used for 
different lattice lengths. 

However, for very small values of At the probability that "something" 
will happen in a Monte Carlo step becomes very small in comparison with 
the probability that "nothing" will happen. Therefore the fact that a 
random generator never provides perfectly uniformly distributed numbers 
limits the possibility to improve the simulations by decreasing At. 

Another serious limitation is the growth of the necessary CPU time, 
which is proportional to (At) ~. As an example, take the CPU time of 
80sec for L = 3 ,  Ns= 20,000, z l t=5  x 10 -3, and Zmax = 0 .  l. 

We are interested not only in the scaling function, but in the correc- 
tions as well. The latter can only be determined for values of the scaling 
variable z for which the corrections are much larger than the numerical 
errors. Values of z=0.01 ..... 0.1 turn out to be suitable. 
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Table I1. Monte Carlo Data and Exact Results for Periodic Boundaries 
and A ' = 0  

Scaling function Fo( z ) Corrections F2(z, O) 

z Analytical MC Analytical MC 

0.01 7.979 7.839 + 0.005 - 99.8 - 103.2 +_ 0.3 
0.02 5.642 5.680 + 0.004 - 35.3 -45.0 +_ 0.3 
0.03 4.607 4.635 ___ 0.004 - 19.2 -24.3 _+ 0.3 
0.04 3.989 4.006 +_ 0.003 - 12.5 - 15.0 +_ 0.3 
0.05 3.568 3.577 +_ 0.003 - 8.9 - 10.1 ___ 0.3 
0.06 3.257 3.264 + 0.003 - 6.8 - 7.4 _+ 0_2 
0.07 3.016 3.022 _ 0.003 - 5.4 - 5.8 _+ 0.2 
0.08 2.821 2.825 -i- 0.003 -4.4 -4.7 _ 0.2 
0.09 2.660 2.661 +_ 0.003 - 3.7 - 3.7 _ 0.2 
o. 10 2.523 2.525 +_ 0.003 - 3.2 - 3.2 _+ 0.2 

To  d e m o n s t r a t e  the accuracy ,  we m a d e  s imula t ions  for L = 9, 10 ..... 16 
with  A t = 5 x  10 -3  and  ave raged  over  20,000 samples .  The  difference 

be tween  the s imula ted  c o n c e n t r a t i o n  and the exac t  express ion  is a lways  less 

than  0.4 % and  less than  the s t anda rd  dev ia t ion  of  the mean.  Wi th  the help 
of  a X 2 fit we c o m p u t e  a p p r o x i m a t i o n s  for the scal ing func t ion  and  the 

cor rec t ions  in 1/L  2 for fixed values  of  z. The  results are  g iven  in Tab le  II 

a l ong  with  the exact  express ions  f rom paper  I. It  can  clearly be seen that  

M o n t e  C a r l o  s imula t ions  p rov ide  re l iable  i n f o r m a t i o n  a b o u t  the scal ing 

proper t ies .  
The  p r o g r a m s  were  wr i t ten  in F o r t r a n  using the R A N  r a n d o m  n u m b e r  

g e n e r a t o r  and  executed  on D E C  works ta t ions .  

2 .1 .  T h e  I n f l u e n c e  o f  t h e  C o a g u l a t i o n  R a t e  

T o  solve the c o a g u l a t i o n  m o d e l  exact ly  in pape r  I it was necessary to 

choose  the c o a g u l a t i o n  rate equa l  to the diffusion rate,  i.e., A ' =  0. N o w  we 

use M o n t e  Ca r lo  s imula t ions  to s tudy the way the scal ing proper t ies  

change  for different choices  of  the c o a g u l a t i o n  rate,  i.e., A'  ~ 0. 
W e  use a full la t t ice as init ial  con f igu ra t ion  c o r r e s p o n d i n g  to an  

o c c u p a t i o n  p robab i l i ty  of  p = 1. Both  per iod ic  and  open  b o u n d a r y  condi -  

t ions are  cons idered .  Averages  are  a lways  t aken  over  N.~. = 20,000 samples ,  

except  where  o the r  n u m b e r s  are  stated.  T h e  exponen t s  and  the scal ing 

funct ions  are  ca lcu la ted  for different values of  z and  A'  by app ly ing  the X 2 

fit to the da t a  ob ta ined  for different lat t ice lengths.  
The  first step is to de t e rmine  the scal ing e x p o n e n t  x in Eq.  (1.4). 

F o r  this purpose ,  for each  va lue  of  A'  we per form s imula t ions  for 
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L = 500, 550 ..... 950 taking S t  = 0.5. Averaging over 400 samples is sufficient 
in this case, whereas in all o ther  s imulat ions we use 20,000 samples. F o r  
each value of z, x is determined with the help of the X 2 fit according to 

l og [c ( z ) ]  = const + x log(L)  (2.7) 

With  an accuracy of 5 % or  bet ter  we obta in  x = - 1 ,  for any A'. 
The second step is to find the leading term of  the corrections.  In order  

to do so, we need an approx ima t ion  Fo for the scaling function Fo. F o r  this 
purpose  we use the value of Lc(z, d ' )  obta ined  from simulat ions on a 
lattice of length L = 1000. Then we perform another  set of s imulat ions  on 
lattices of length L = 30, 35,..., 85 with St = 5 x 10 - 3 .  Using this second set 
of data,  we make  a logar i thmic  fit of the type 

log[Lc(z) -/~o] = const  - y  log(L)  (2.8) 

In all cases the correct ion exponent  y is found to be equal  to + I with an 
error  of 15 % or  less. Observe the contras t  to the case of A'  = 0, where the 
leading correct ion exponent  is y = 2. So the dominant correction for A' P 0 
is of the order of 1/L. 

Therefore we finally approx imate  the second set of da t a  by 

Lc(z, A')= Fo(z, A')4 
Fl(z, d') + Fz(z, A') 

L L 2 (2.9) 

The scaling function Fo is found to be independent of A' and has the value 
given in paper  I, i.e., Fo(z, A') = Fo(z, 0). This can be seen in Tables  I I I  and 
IV, where the values obta ined  for Fo are given for per iodic  and for open 
bounda ry  condit ions,  respectively. 

Table III. Scal ing Funct ion Fo(Z) for  Per iodic Boundar ies 

z z1'=0.75 ,4' = 0.5 A ' = 0  • ' =  --1 z l '=  --2 

0.01 7.95 ___+ 0.06 7.87 __+_ 0.03 7.98 7.97 ___+ 0.02 7.88 + 0.03 
0,02 5.43 ___+ 0.04 5,58 + 0.02 5.64 5.62 + 0.02 5.57 _____ 0.02 
0.03 4.50 + 0.04 4.55 + 0.02 4.61 4.58 +___ 0.02 4.60 +___ 0.02 
0.04 3.91 +0.04 3.94+0.02 3.99 3.95+0.02 3.96+0.02 
0.05 3.50+0.03 3.55+0.02 3.57 3.54--+0.02 3.56___+0.02 
0.06 3.20 + 0.03 3.25 ___+ 0,02 3.26 3.23 ___+ 0.02 3.24 __+ 0.02 
0.07 2.97 _____ 0.03 3.00 + 0.02 3.02 2.98 + 0.02 3.00 + 0.02 
0.08 2.78 + 0.03 2.80 __+ 0.02 2.82 2.80 + 0.02 2.79 -+ 0.02 
0.09 2.64 + 0.03 2.63 -+ 0.02 2.66 2.63 + 0.01 2.63 ___+ 0.02 
0.10 2.49 +0.03 2.51 _____0.02 2.52 2.51 __0.01 2.50+0.02 
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Table IV. Scaling Funct ion Fo(z ) for Open Boundaries 

1479 

z A '=0 .5  A ' = 0  A ' =  --1 

0.01 8.33 +0.04 8.34 8.27 +_0.05 
0.02 5.98 +_ 0.03 6.01 6.00 +_ 0.04 
0.03 4.92 +_ 0.03 4.97 4.99 +_ 0.04 
0.04 4.28 _ 0.02 4.35 4.41 + 0.04 
0.05 3.89 _ 0.02 3.93 3.96 +_ 0.03 
0.06 3.60 +_ 0.02 3.62 3.65 4- 0.03 
0.07 3.36 4- 0.02 3.38 3.40 _+ 0.03 
0,08 3.15 +0.02 3.18 3.18 +0.03 
0.09 3.01 +_ 0.02 3.02 3.01 +_ 0.03 
0.10 2,88 + 0.02 2.89 2.85 + 0.03 

The first-order correction function F~ behaves according to the 
following scheme: 

F~(z,A')>O for A ' > 0  

Fj(z,A')--O for A ' = 0  (2.10) 

Fl(z,A')<O for A ' < 0  

The first and second correction functions are shown in Figs. 1 and 2 
for periodic boundaries and in Figs. 3 and 4 for open boundaries, together 
with the analytic results for A '=  0. Since the second-order correction term, 
i.e., F2(z, A')/L 2, becomes already of the order of the statistical errors of the 
simulations, the correction function F2 can only be determined with large 
numerical errors. 

As explained in paper I, the scaling limit for small z and the long-time 
behavior in the thermodynamic limit (L ~ ~ )  are related. For periodic 
boundaries and A '=  0 we found the following expansion for the concen- 
tration: 

(1),2[ 1(/p_2,2 ,) ] 
c(t)= I - ~ = ~  p2 ~ + "'" (2.11) 

The leading term is obtained from the scaling function and the second term 
from the expansion of the corrections is I/L 2. For A' ~ 0 the leading correc- 
tion is of the order of IlL. A ;(2 analysis of the corresponding correction 
function F~ shows that it behaves like I/z. Therefore we obtain an 
expansion of the form 

f I "~'/' F +a(A'> c(t)=\~nt / L 1 - - ~ - + O ( t - ' ) + . . - ]  (2.12) 
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Fig. 1. 
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Fig. 3. 
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Thus the change of the coagulation rate does not affect the leading term of 
the large-time expansion of the concentration in the thermodynamic limit. 
However, the next-to-leading term is no longer of the order of t -3/z  as for 
3 ' =  0, but of the order of t - t .  The coefficient "a depends on the value of 
A', but it is found to be independent of the initial occupation probability 
p. Our conclusions are in perfect agreement with the large-time expansion 
of the analytical results obtained by Privman et al. "41 from a diffusion- 
equation-type approximation scheme (where a random distribution of 
particles is chosen as initial configuration). Taking the lattice spacing equal 
to 1, their result can be rewritten in the form: 

a (d ' )  = 1 - d '  (2.13) 

For periodic boundary conditions we present the values of a for different 
d '  in Table V. These data have been computed using a Z 2 fit of the values 
for the first correction function FI starting with an initially fully occupied 
lattice. They are in good agreement with Eq. (2.13). Moreover, we see that 
these results hold also for values of c greater than 1, i.e., d '  < O. 

If one is interested in the time dependence of systems in the thermo- 
dynamic limit (L-o  ~ )  only, of course there is no need to calculate the 
scaling expansion first. Instead one performs simulations on large lattices. 
We found that L = 2000 is sufficient to obtain reliable results. For both 
periodic and open boundaries we collected data for several values of d, 
between - 7  and 0.875 starting with initial occupation probabilities 
between 0.05 and 1.0. In each case we averaged over 20,000 runs, each of 
them performed up to values of t-'- 104. Using X 2 fits, we checked again 
that a is independent of p. Concerning the d '  dependence of the coefficient 
a we also found that the difference from (2.13) is smaller than 5%, i.e., 
smaller than those of the finite-size scaling data. For times larger than 
~ 100 the Monte Carlo data are in very good agreement with Eq. (2.12). 

Table V. First Correction Term a(A',  1 ) of the 
Large-Time Expansion for Periodic Boundaries 

a(,~') 

A' MC Analytical 

- 2.00 - 0.512 + 0.060 - 0.53 
- 1.00 -0.414 + 0.083 -0.40 

0.50 0.894 4- 0.070 0.80 
0.75 2.831 + 0.130 2.40 
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Table VI. Influence of the Initial Conditions on the Scaling Properties 
for Periodic Boundaries and A' = 0 

Scaling function Fo(z) Corrections F2(z , O) 

p = 0.5 AAfZJ~... p = 0.5 AA~Z. . .  
Analytical MC Analytical MC 

0.01 7.979 7.967 4- 0.008 --212.5 -836.7 4- 12.6 
0.02 5.642 5.623 + 0.007 - 106.3 --304.8 4- 10.7 
0.03 4.607 4.607 4- 0.006 - 70.8 -- 164.4 + 9.7 
0.04 3.989 3.988 4- 0.006 - 53.1 - 109.8 + 9.0 
0.05 3.570 3.556 4- 0.006 -42.4 - 77.2 + 8.6 
0.06 3.257 3.245 + 0.005 -- 35.4 -- 61.7 -I- 8.2 
0.07 3.016 3.006 4- 0.005 -- 30.4 -- 48.8 4- 7.9 
0.08 2.821 2.808 4- 0.005 -26.6 --40.6 4- 7.6 
0.09 2.660 2.647 _+ 0.005 --23.6 --27.7 4- 7.4 
0.10 2.523 2.517 4- 0.005 --21.3 -- 17.6 4- 7.2 

2 .2 .  T h e  I n f l u e n c e  o f  t h e  I n i t i a l  C o n d i t i o n s  

F o r  per iod ic  bounda r i e s  and  A ' =  0 we use M o n t e  Ca r lo  s imula t ions  

to s tudy  the inf luence of  a weak ly  cor re la ted  init ial  state. The  con f igu ra t i on  
at t = 0  is chosen  to be a pai rwise  a l t e rna t ing  sequence  of  par t ic les  and  

vacancies  ( A A f ~ A A ( ~ ( ~ 5 . . .  ). 
Lat t ice  lengths  of  L = 3 6 , 4 0  ..... 80 ( ~ t = 5 •  10 -3 )  are  used. W e  

ana lyze  the  da t a  using the p r o c e d u r e  descr ibed  in the p rev ious  section.  The  

results,  s h o w n  in Tab le  VI,  conf i rm that the scaling function is not influen- 
ced by an initial state with small clusters. The  cor rec t ions  are  still of  the 
o rde r  of  1/L 2, but  they  are  different f rom those  given in pape r  I for p = 0.5, 

a l t h o u g h  the init ial  c o n c e n t r a t i o n  is the same,  c ( 0 ) =  0.5. 

3. E X T R A P O L A T I O N  F R O M  F I N I T E  L A T T I C E S  

T h e  c o a g u l a t i o n  mode l ,  be ing  exact ly  solvable ,  p rov ides  a g o o d  

expe r imen ta l  field to test the accuracy  of  numer i ca l  e x t r a p o l a t i o n  f rom 

finite lat t ices to de t e rmine  scal ing funct ions  and  exponents .  O u r  special  

in teres t  is to find ou t  f rom wha t  size of  lat t ices it is poss ible  to o b t a i n  

re l iable  i n f o r m a t i o n  a b o u t  the scal ing e x p o n e n t  and  the scal ing func t ion  of  

the par t ic le  c o n c e n t r a t i o n  as well as a b o u t  the correc t ions .  
The  ex t r apo l a t i ons  are  pe r fo rmed  using the a l g o r i t h m  p r o p o s e d  by 

Bul i rsch and  S toe r  ~2~ (BST).  
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3.1. Test of Extrapolations for Periodic Boundary Conditions 

The BST extrapolations are performed with seven input values 
(L = 2 ..... 8) and with eight input values ( L =  2,..., 9). For small values of z 
the BST algorithm is convergent only in the latter case. The input values 
are calculated using the exact expression for the concentration in the 
coagulation model with zJ '=  0 derived in paper I. 

For z the values z=0.1 ,  0.2 ..... 1.0 were chosen, covering a sufficiently 
large range in time between t=0.1  and t = 2 5  where the behavior of the 
scaling function and its corrections are investigated. 

Let us now describe the extrapolations in detail: 

(a) Scaling exponent. In order to get a higher precision in our 
estimates, we write the scaling exponent as x =  - 1  +.~ and try to deter- 
mine the difference ff from the theoretical value for the scaling exponent 
x =  - 1 ,  using the following expression to form the extrapolants: 

-~L~- ln[(L + o  1) c(L+ 1, z)/Lc(L, z)] 
(3.1) 

ln[-(L + 1)/L] 

The only inconvenience of this method is the fact that one obtains one 
input value less than for the extrapolation of the scaling function. The 
results are shown in Table VII for each z. We find .~ = 0 with a numerical 
error less than 3 • 10 -3. 

(b) Sealing function. The scaling function Fo is extrapolated from 

T~ot'l = Lc(z,L ) (3.2) 

Table  VII. Ex t rapo lan ts  from Finite Lat t ices ( L - - 2  ..... 9) for 
Periodic Boundary Conditions and A,_- 0 

Scaling function Fo(z) Corrections F2(z ) 
1 + x  3 , - 2  

Extrapolated Extrapolated Analytical Extrapolated Extrapolated Analytical 

0.1 0.004547 2.5210 2.5231 --0.134 -2 .776  --3.154 
0.2 0.002986 1,784283 1.784286 -0.011 - I .1011 --1,1017 
0.3 0.0000353 1,46043902 1.4604390i --0.005 -0.51697 --0.51697 
0.4 0.0000003 1.27857491 1.27856700 0.005 --0.22442 --0.22246 
0.5 0.0000477 1.169713390 1.169713392 0.026 --0.07196 --0.07196 
0.6 -0.000002 1.103560880 1.103560906 0.145 -0.00291 --0.00291 
0.7 0.0000304 1.0632169524 1.0632169522 --0.003 0.023694 0.023694 
0.8 0.0000726 1.0385928840 1.0385928831 0.005 0.030097 0.030097 
0.9 0.0000522 1.02356074810 1.02356074816 --0.002 0.0279317 0.0279317 
1.0 0.0000988 1.01438377205 1.01438377206 0.006 0.0228893 0.0228893 
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The results are compared to the analytical values of the scaling function 
Fo(z) calculated from paper I in Table VII. The bigger the values of z are, 
the higher the precision of the extrapolants becomes: for small z, the 
difference from the theoretical value is of the order of 2 x 10-3; for z = 1.0 
we even get a precision of ten digits in comparison to the exact scaling 
function. This can easily be understood by looking at the definition of 
z = 4t/L z. For small values of z and L the time t is small as well and the 
concentration of the system is close to 1. Therefore we expect large correc- 
tions to the leading term 

L ~  1 
c(L, z) ' -~ ro(z) 

i.e., the convergence of the finite-size scaling expansion becomes worse if z 
decreases. 

(c) Correction exponent. Similar to (a), we extrapolate the difference 
)~ = y -  2 to the theoretical correction exponent y = 2. The input values are 
calculated according to 

3~,,_) = ln{(L + b _  1)2 [(L + 1) e(L+ 1, z ) -Fo(z)] /L2[Lc(L,  z ) -Fo ( z ) ] }  
ln([L + 1)/L) 

(3.3) 

For the value of the scaling function Fo(z ) we use the result obtained in (b). 
So there is already a numerical error in the input values leading to a lower 
precision for the correction exponent in comparison to the scaling expo- 
nent. We find 3~ = 0 with an error of 10 -3. Because the correction function 
F2(z) has a zero close to z = 0.6, it can be understood easily that the correc- 
tion exponent can only be extrapolated with a smaller accuracy at this 
point. 

(d) Correction function. We are interested in the corrections F2(z) to 
the scaling function, i.e., we extrapolate 

T~oL)= L'-(Lc(L, z) - Fo(z)) (3.4) 

For Fo(z) we again use the result obtained in (b). Arguing similarly to the 
approximtion of the scaling function, we can understand the high precision 
of the extrapolated correction function for large values of z. But even for 
small values of z (except for z= 0 .1 )  the precision is in the range of 
6 x 10 -4. The bad value for the extrapolated corrections for z = 0.1 can be 
understood by looking at the corresponding extrapolated scaling function, 
which is known only with a precision of 2 x 10 -3. Since this value enters 
the input values for the extrapolation of the corrections, the algorithm 
cannot lead to a reasonable result. 

822/78/5-6-19 
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In conclusion, we can say that the BST algorithm provides a powerful 
tool for extrapolations from finite lattices. Already from ten sites, for which 
the Hamiltonian can easily be diagonalized explicitly in order to get a 
value for the concentration, we obtain extrapolations with a very high 
precision. This knowledge can be used especially to examine nonintegrable 
chemical models and to determine their critical exponents and finite-size 
scaling properties. 

3.2. Influence of the Initial Conditions for Open 
Boundary Conditions 

Once having tested the accuracy of the BST algorithm, we now use it 
to examine the influence of a weakly correlated initial state on the scaling 
and the correction function for open boundary conditions. For this pur- 
pose, we numerically calculate the concentration for finite lattices using 
the expressions found in paper I for the eigenfunctions of the system of 
differential equations describing the time evolution of the coagulation 
model. Analytically, these calculations become too cumbersome. Afterward, 
we extrapolate the finite-lattice data with BST. This time we use for the 
input values lattice lengths between 20 and 40 sites in order to get a higher 
precision for the extrapolated values. 

Table VIII. Influence of the Initial Conditions on the Scaling Properties 
for Open Boundaries and A '=O  

Scaling function Fo(z ) Corrections F2( z ) 

p = 0 . 5  AAOf ,~ . . .  p = 0 . 5  
Analytical Extrapolated Analytical 

A ~ . , .  
Extrapo[ated 

0,01 8.342226 8.344116 -1950.15 -1050.17 
0.02 6.005276 6.005276 -726.78 --381.02 
0.04 4.352803 4.352803 -275.60 --144.03 
0.07 3.379100 3.379100 -127.93 -66 .66  
0.10 2.886513 2.886513 -79.08 -41 .12  
0.20 2A47403 2.147403 --31.71 -16.41 
0.30 1.818125 1.818125 -18 .94  --9.79 
0.40 1.617195 1.617195 --13.21 --6.81 
0.50 1.475872 1.475872 -9 .83  --5.04 
0.60 1.369969 1.369969 --7.50 -3 .82  
0.70 1.288534 1.288534 --5.77 --2.91 
0.80 1.225287 1.225287 --4.45 -2 .23  
0.90 1.175981 1.175981 --3.44 --1.70 
1.00 1.137489 1.137489 --2.66 --1.30 
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Using the same procedure as described in Section 3.1, we determine 
the scaling function and the corrections for the weakly correlated initial 
condition AA~f~3AA~f,~3 .... The results are shown in Table VIII in com- 
parison to the analytical values for uncorrelated initial conditions (initial 
occupation probability p = 0.5). 

The scaling function is again found to be independent of the initial 
conditions with a precision of 10 -6 for values of z larger than z=0.1.  

On the other hand, the corrections are influenced by the different 
choice of initial conditions. They are even different for uncorrelated and 
weakly correlated initial conditions with the same initial concentration. 
The corrections are smaller for the pairwise alternating sequence of 
particles and holes than for the random distribution in the case of open 
boundary conditions. 

4. C O N C L U S I O N S  

In this paper, we presented the numerical examination of the finite-size 
scaling behavior of the coagulation model. 

We showed on the one hand the universality of the scaling function 
with the help of Monte Carlo simulations. On the other hand, we were able 
to determine critical exponents already from lattices of ten sites, using 
finite-lattice extrapolations. The test of these two numerical methods 
(Monte Carlo simulations and finite-lattice extrapolations) revealed that 
they can be successfully applied to characterize the finite-size scaling 
behavior of reaction-diffusion processes. 

Let us discuss our results in detail. 

�9 Universality of  the scaling function and the corrections. As a first 
application of the Monte Carlo simulations, we examined the scaling func- 
tion for periodic and open boundary conditions for different tuning of the 
rates in order to answer the question of whether the scaling function is 
universal (i.e., independent of the details of the model): we varied the 
parameter zl' that reflects the difference between the diffusion rate D and 
the coagulation rate c. The scaling function was found to be universal. 

As far as the corrections to the scaling function are concerned, we 
obtained a leading correction term of the order 1/L in the case of z/' :~0. 
The corresponding correction function (the coefficient of 1/L) depends 
on the values of A'. However, it has always the same sign as A' [cf. 
Eq. (2.10)]. In particular, for A' = 0  it is zero as well. This explains the fact 
that we obtained leading corrections of the order of 1/L 2 in the case zi' = 0 
which was treated analytically in paper I. 
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From the results mentioned above we conclude that in the ther- 
modynamic limit the leading term of the large-time expansion is universal, 
i.e., independent of zl'. The next-to-leading term is of the order of t - I  as 
long as there is an asymmetry between the coagulation and the diffusion 
rate. Using Monte Carlo simulations on lattices of L=2000 ,  we have 
checked that its coefficient is independent of the initial concentration. Com- 
paring our values with the analytical results of ref. 14, we find a perfect 
agreement. Thus we can explain the apparent t-dependent exponent law of 
the concentration decay observed in ref. 17 through the combination of a 
t-~/2 and a t-~ term. 

�9 Influence of the initial conditions. We examined the influence of 
weakly correlated initial states both for open and periodic boundary condi- 
tions. A configuration with small clusters ( A A ~ A A . . . )  was used as 
initial state. We showed that the scaling function is not influenced by the 
initial conditions. So we observe again the phenomenon of self-organiza- 
tion. The system develops according to its intrinsic dynamics and is inde- 
pendent of the initial conditions for large times and large lattices. 

�9 Test of numerical methods. In order to test the accuracy of Monte 
Carlo simulations, we compared the results obtained by simulation to the 
data that are analytically known. This comparison revealed that the Monte 
Carlo method provides reliable results that approximate very well the exact 
expressions. So this method can successfully be used to investigate the 
finite-size scaling behavior of chemical models. 

As far as finite-lattice extrapolations are concerned, we demonstrated 
that the algorithm of Bulirsch and Stoer ~z~ is a useful method to determine 
the scaling and the correction exponents and functions already from very 
small lattices. The only condition one has to impose is that the input values 
(for small lattices) have to be known with a sufficiently high precision. The 
accuracy of the extrapolated values depends on the number of input values. 
However, in our case it was sufficient to take the values from lattices of 
length up to nine sites as input values to determine the exponents with a 
precision of at least 10 -3. So this method is very suitable for the analysis 
of the finite-size scaling regime for models that cannot be treated 
analytically. In this case a numerical diagonalization is still possible for 
small lattices and can be used to generate the input values for the BST 
extrapolation. 

�9 Best choice of the parameters for the numerical examination. The 
analysis of the coagulation model allows us to decide which is the best 
choice of the parameters (tuning of the rates, initial conditions, boundary 
conditions, and value of the scaling variable z) for the numerical deter- 
mination of the finite-size scaling data. 
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1. Tuning of the rates. As far as this model is concerned, the scaling 
function can best be determined if the rates are tuned in a way that d '  = 0. 
Then the leading correction term is of the order L -2, i.e., small for large 
L; furthermore, the correction function (the coefficient of L -2) is smallest 
for A '=0 .  

2. Choice of initial conditions. As far as the choice of the initial 
conditions is concerned, the corrections become smallest for large values of 
the initial occupation probability p, as can be seen in Fig. 5. The effect of 
correlated initial conditions (an interpolating sequence of particles and 
holes) cannot be easily understood and requires a more detailed analysis: 
for periodic boundary conditions, the corrections become smaller for 
uncorrelated initial conditions (when the initial concentration is kept the 
same), while for open boundary conditions, the cluster configuration gives 
rise to smaller correction terms (cf. Tables VI and VIII). So in general the 
most promising choice of initial conditions for the determination of the 
scaling function and the scaling exponent is the full lattice. 

3. Choice of boundat7 conditions. The discussion of which boundary 
conditions are more convenient for a numerical examination of the scaling 
and the correction exponent (the scaling functions are different for different 
boundary conditions) is very difficult and depends on the other parameters 
as well. If the initial occupation probability p is smaller than 1 and zl' = 0, 
the corrections are smaller for periodic boundaries. For 3 '  # 0 and p = 1, 
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Fig. 5. Correction function F,(z, d ' )  for periodic boundary conditions, z/' =0, and different 
values of the initial occupation probability p. 
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however, the corrections are smaller for open boundary conditions (cf. 
Figs. 1 and 3). These cases are interesting for the determination of the 
correction exponent. Taking p = 1 and A' = 0 (the best choice of A' and p 
for the determination of the scaling exponent), we find that the corrections 
are almost identical for different boundary conditions. In Figs. 2 and 4 
values for z between 0.01 and 0.1 are given where the corrections are 
exactly the same. For larger values of z, however, they become slightly 
different (cf. paper I). Taking into account that periodic boundaries usually 
allow a Fourier transformation of the equations and therefore a reduction 
of the number of degrees of freedom of the system, it is more convenient 
to work with periodic boundary conditions here. 

4. Value of  the scaling variable z. For the determination of the 
scaling exponent, one has to choose a value of z where the corrections are 
small, i.e., a value around z = 0.6 should be convenient. Since the zero of 
the correction function occurs at a smaller value of z for periodic boundary 
conditions, these boundary conditions better allow a Monte Carlo simula- 
tion: the smaller the value of z is, the smaller the simulated time can be 
made and the more precise the results of the simulation are. For the deter- 
mination of the correction exponent the situation is quite different. Here 
the correction function should be large in order to allow a numerical fit of 
the simulated data. So one has to choose small values of z for a Monte 
Carlo simulation (z~<0.1). The BST algorithm, however, converges better 
for large values of z (z>~0.2). 

Whether these observations hold for more complicated chemical 
systems still has to be investigated. 

Summing up, we can say that the numerical treatment presented here 
completes the picture of the finite-size scaling behavior of the coagulation 
model. Both analytical and numerical methods can be successfully applied 
to chemical models. The results obtained in our work now open the way 
toward the investigation of more complex chemical systems. The methods 
tested here provide a powerful tool to gain deeper insight into nonequi- 
librium physics. 
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